medric medric
[닫기]
잠시만 기다려 주세요. 로딩중입니다.

다양한 물성을 혼용하여 제작된 구강보호장치가 치아 및 악골에 미치는 영향

Finite element analysis of the effects of mouthguard produced by combination of layers of different materials on teeth and jaw

대한치과보철학회지 2011년 49권 4호 p.324 ~ 332
소웅섭 ( So Woong-Seob ) - 경희대학교 치의학전문대학원 치과보철학교실

이현종 ( Lee Hyeon-Jong ) - 경희대학교 치의학전문대학원 치과보철학교실
최우진 ( Choi Woo-Jin ) - 경희대학교 치의학전문대학원 치과보철학교실
홍성진 ( Hong Sung-Jin ) - 경희대학교 치의학전문대학원 치과보철학교실
류경희 ( Ryu Kyung-Hee ) - 경희대학교 치의학전문대학원 치과보철학교실
최대균 ( Choi Dae-Gyun ) - 경희대학교 치의학전문대학원 치과보철학교실

Abstract

연구목적: 다양한 물성의 층으로 제작된 마우스가드를 장착하였을 때 치아와 악골에 가해지는 힘의 유한요소 분석을 시행하기 위함이다.

연구 재료 및 방법: 연구대상의 모형을 교합기에 장착한 뒤 Signature Mouthguard System (Dreve dentamid GmbH., Unna, Germany)을 이용하여 맞춤형 구강보호장치를 제작하여 장착한 후 두정부에서 경추까지 1.0 mm로 컴퓨터 단층촬영을 시행하였다. 영상을 Cantibio BIONIX 프로그램을 이용하여 3차원 유한요소 모델을 생성한 뒤 HyperMesh 소프트웨어를 이용하여 데이터 분석을 시행하였다. 마우스가드는 층에 따라 다음과 같이 분류하였다. 1. 연질(Bioplast)(SG) 2. 경질(Duran)(HG) 3. 중질(Drufomat)(MG) 4. 연질+중질(SG + HG) 5. 경질 + 연질(HG + SG) 6. 연질 + 경질 + 연질(SG + HG + SG) 7. 경질 + 연질 + 경질(HG + SG + HG)하중위치는 하악골의 전방 이부(F1), 하악 좌측 제1대구치 하방의 하악체 중앙(F2), 하악각의 전연(F3) 세점으로 하였고 FH Plane에 45도 방향으로 800N, 0.1초의 힘을 가하였다. 계방법으로는반복분산분석과사후분석(다중비교분석(Multiple comparison test) DUNCAN test)을이용하였다. SPSS 소프트웨어 (Ver.13, SPSS Inc., Chicago, IL, USA)를사용하여 분석하였다.

결과: 치아와 상악골에서의 응력분포는 모든 하중위치에 대하여 연질층이 하악 치아에 접촉하는 구강보호장치가 적은 응력값을 나타냈으며, 과두에서의 응력분포는 모든 하중위치에 대하여 경질층이 하악 치아에 접촉하는 구강보호장치가 적은 응력값을 나타내었다. 두 연질층 사이에 경질층이 개재된 세층의 구강보호장치가 하중 시 상대적으로 고르게 응력이 분산되는 것으로 나타났다.

결론: 상하악 치아에는 연질층이 접촉하고 두 연질층 사이에 경질층을 삽입하는 형태의 구강보호장치가 악안면 외상 시 상대적으로 하중을 분산시키는데 가장 우수하다
고 생각된다.

Purpose: The purpose of this study was to compare the stress distribution of teeth and jaw on load by differentiating property of materials according to each layer of widely used mouthguard.

Materials and Methods : A Korean adult having normal cranium and mandible was selected to examine. A customized mouthguard was constructed by use of DRUFOMAT plate and DRUFOMAT-TE/-SQ of Dreve Co. according to Signature Mouthguard system. The cranium was scanned by means of computed tomography with 1mm interval. It was modeled with CANTIBio BIONIX/Body Builder program and simulated and interpreted using Alter HyperMesh program. The mouthguard was classified as follows according to the layers. ① soft guard (Bioplast)(SG) ② hard guard (Duran)(HG) ③ medium guard (Drufomat)(MG) ④ soft layer + hard layer (SG + HG) ⑤ hard layer + soft layer (HG + SG) ⑥ soft layer + hard layer + soft layer (SG + HG + SG) ⑦ hard layer + soft layer + hard layer (HG + SG + HG) The impact locations on mandible were gnathion, the center of inferior border, and the anterior edge of gonial angle. And the impact directions were oblique (45(R)). The impact load was 800 N for 0.1 sec. The stress distribution was measured at maxillary teeth, TMJ and maxilla. The statistics were conducted using Repeated ANOVA and in case of difference, Duncan test was used as post analysis.

Results: In teeth and maxilla, the mouthguard contacting soft layer of mandibular teeth presented lowest stress measure and, in contrast, in condyle, the mouthguard contacting hard layer of mandibular teeth presented lowest stress measure.

Conclusion: For all impact directions, soft layer + hard layer + soft layer, the mouthguard with three layers which the hard layer is sandwiched between two soft layers, showed relatively even distribution of stress in impact.

키워드

유한요소분석; 구강보호장치
FEM analysis; Mouthguard; Stress distribution; Soft layer; Hard layer
원문 및 링크아웃 정보
  
등재저널 정보
KCI
KoreaMed