Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

ÀÌÁß¿¡³ÊÁö±¤ÀÚ¼±ÀÇ Àü»êÈ­´ÜÃþÃÔ¿µ¼úÀ» ÀÌ¿ëÇÑ Á¤·®Àû °ñ¹«±â¹°ÇÔ·®ÀÇ ºñ±³ºÐ¼®

Comparative Analysis of Bone Mineral Contents withDual-Energy Quantitative Computed Tomography

´ëÇÑÄ¡·á¹æ»ç¼±°úÇÐȸÁö 1997³â 15±Ç 2È£ p.153 ~ 158
ÃÖÅÂÁø ( Choi Tae-Jin ) - °è¸í´ëÇб³ Àǰú´ëÇÐ Ä¡·á¹æ»ç¼±°úÇб³½Ç

¼­¼öÁö ( Suh Soo-Jhi ) - °è¸í´ëÇб³ Àǰú´ëÇÐ Áø´Ü¹æ»ç¼±°úÇб³½Ç
À±¼±¹Î ( Youn Seon-Min ) - °è¸í´ëÇб³ Àǰú´ëÇÐ Ä¡·á¹æ»ç¼±°úÇб³½Ç
±è¿Á¹è ( Kim Ok-Bae ) - °è¸í´ëÇб³ Àǰú´ëÇÐ Ä¡·á¹æ»ç¼±°úÇб³½Ç
À̼º¹® ( Lee Sung-Moon ) - °è¸í´ëÇб³ Àǰú´ëÇÐ Áø´Ü¹æ»ç¼±°úÇб³½Ç

Abstract

¸ñ Àû: ÀÌÁß±¤ÀÚ¿¡³ÊÁö Àü»êÈ­´ÜÃþÃÔ¿µÀÇ Á¤·®Àû°ñ¹«±â¹°ÇÔ·®(Dual-Energy Quantitative Computed Tomography, DEQCT)ÀÇ ½ÇÇè»ó¼ö¸¦ ±¸Çϰí, DEQCT¿¡ ÀÇÇÑ °ñ¹«±â¹°ÇÔ·®°ú µ¿¹°Ã´Ãß ÇØ¸é°ñÀÇ ¹«±â¹°ÇÔ·®°ú ÀÏÄ¡ÇÏ´Â Áö ºñ±³ÇÏ¿´´Ù.

´ë»ó ¹× ¹æ¹ý: Á¶Á÷ÀÇ CT ¹øÈ£´Â ÁÖ¾îÁø ¹æ»ç¼±¿¡³ÊÁö¿Í Á¶Á÷¼ººÐ¿¡ µû¸¥ ¹æ»ç¼± °¨¾à°è¼öÀÇ ÇÔ¼ö·Î ¾ò°Ô µÇ¸ç, ºù»ç¼±°¨¾àÀº ¿¡³ÊÁö¿¡ µû¶ó ´Þ¶óÁö¹Ç·Î º» ¿¬±¸´Â CT¿¡¼­ »ç¿ëµÇ°í ÀÖ´Â 80°ú 120kVp X¼±¿¡¼­ °¢ Á¶Á÷ÀÇ Áú·®°¨¾à°è¼ö¸¦ ±¸ÇÏ¿© ½ÇÇèÀûÀ¸·Î DEQCT¿¡ ÀÇÇÑ °ñ¹«±â¹°ÇÔ·®À» °áÁ¤ÇÏ¿´´Ù. DEQCT¿¡¼­ °ñ¹«±â¹°ÇÔ·®°áÁ¤¿¡ ÀÌ¿ëµÇ´Â ½ÇÇè»ó¼öµéÀº °ñµî°¡¹°ÁúÀÇ Ç¥Áؽ÷á K2HPO4 ¿ë¾×°ú ¿¬ºÎÁ¶Á÷ÀÇ ¹° ¹× Áö¹æµî°¡¹°Áú·Î ¹«¼ö¾ËÄÚȦÀ» ÀÌ¿ëÇÏ¿© ±¸ÇÏ¿´´Ù.°ñ¹«±â¹°ÇÔ·® ºñ±³´Â ½ÇÇèÀû »ó¼ö°áÁ¤¿¡ ÀÇÇÑ DEQCT¿Í Á¦ÀÛȸ»çÀÇ DEQCT¸¦ »ç¿ëÇÏ¿© °¢°¢ ±¸ÇÏ¿´À¸¸ç, µ¿¹°Ã´ÃßÇØ¸é°ñ ½ÃÆíÀÇ ÀçÀÇ Áú·®°ú °¢°¢ ºñ±³ÇÏ¿´´Ù.

°á °ú: 80kVp¿¡¼­ °ñµî°¡¹°ÁúÀÇ Áú·®Èí¼ö°è¼ö´Â 0.5608, ¹° 0.2409°ú Áö¹æµî°¡ Á¶Á÷¿¡¼­ 0.2206cm2/gÀ» ¾ò¾úÀ¸¸ç, 120kVpÀÇ ¹æ»ç¼±¿¡¼­´Â 0.3273, 0.2046 ¹× 0.1971cm2/gÀ» °¢°¢ ¾ò¾ú´Ù. °ñµî°¡¹°Áú K2HPO4 Ç¥Áؽ÷Ḧ 80°ú 120kVp X¼±À¸·Î ½ºÄËÇÑ CT ¹øÈ£¸¦ ÀÌ¿ëÇÏ¿© ½ÇÇè»ó¼ö K1´Â 0.3232, K2´Â 0.2450¸¦ °¢°¢ ¾ò¾ú´Ù. ÀÌÁß±¤ÀÚ¿¡³ÊÁö¿¡ ÀÇÇÑ °ñ¹«±â¹°ÇÔ·®ÃøÁ¤°á°ú´Â µ¿¹°Ã´ÃßÇØ¸é°ñ ½ÃÆíÀÇ ÀçÀÇ Áú·®À» °ñ¹«±â¹°ÇÔ·®À¸·Î Á¤ÇÑ °ª°ú ºñ±³ÇÑ °á°ú Àß ÀÏÄ¡ÇÏ¿´À¸¸ç »ó°ü°è¼ö r=0.998À» º¸¿´´Ù.ÇÑÆí, µ¿¹°Ã´Ãß°ñ½ÃÆíÀÇ °ñ¹«±â¹°¿¡ ´ëÇÏ¿© CT¿¡ žÀçµÈ DEQCT¿¡ ÀÇÇÑ °ñ¹«±âÇÔ·®ÀÇ ºñ±³ °á°ú´Â »ó°ü°è¼ö r=0.996 À» º¸¿© »óÈ£ Àß ÀÏÄ¡ÇÔÀ» ¾Ë ¼ö ÀÖ¾ú´Ù.

°á ·Ð: ÀÌÁß±¤ÀÚ¿¡³ÊÁö Àü»êÈ­´ÜÃþ¿µ»óÀåÄ¡¿¡ ´ëÇÑ Á¶Á÷µî°¡¹°ÁúÀÇ ½ÇÇèÀû Áú·®°¨¾à°è¼ö¿¡ ÀÇÇÑ °ñ¹«±â¹°ÇÔ·®°ú Á¦ÀÛ»çÀÇ DEQCT¿¡ ÀÇÇÑ Á¤·®Àû °ñ¹«±â¹°ÇÔ·®ÀÌ ½ÇÇèÀû °ñ¹«±â¹°ÇÔ·®°ú Àß ÀÏÄ¡ÇÔÀ» º¸¿´´Ù.

Purpose: The Dual-Energy Quantitative Computed Tomography(DEQCT) was compared with bone equivalent K2HPO4 standard solution and ash weight of animal cadaveric trabecular bone in the measurement of bone mineral contents(BMC).

Method and Materials: The attenuation coefficient of tissues highly depends on the radiation energy, density and effective atomic number of composition.The bone mineral content of DEQCT in this experiments was determined from empirical constants and mass attenuation coefficients of bone,fat and soft tissue equivalent solution in two photon spectra.In this experiments, the BMC of DEQCT with 80 and 120kVp X rays was compared to ash weight of animal trabecular bone.

Results: We obtained the mass attenuation coefficient of 0.2409, 0.5608 and 0.2206 in 80kVp, and 0.2046, 0.3273 and 0.1971cm2/g in 120kVp X-ray spectra for water, bone and fat equivalent materials, respectively.The BMC with DEQCT was acomplished with empirical constants K1=0.3232, K2=0.2450 and mass attenuation coefficients has very closed to ash weight of animal trabecular bone. The BMC of empirical DEQCT and that of manufacturing DEQCT were correlated with ash weight as a correlation r=0.998 and r=0.996, respectively.

Conclusion: The BMC of empirical DEQCT using the experimental mass attenuation coefficients and that of manufacture have showed very close to ash weight of animal trabecular bone.

Ű¿öµå

Bone Mineral Contents;Dual-Energy Quatitative Computed Tomography
¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸
µîÀçÀú³Î Á¤º¸