medric medric
잠시만 기다려 주세요. 로딩중입니다.

KMS99220 Exerts Anti-Inflammatory Effects, Activates the Nrf2 Signaling and Interferes with IKK, JNK and p38 MAPK via HO-1

Molecules and Cells 2019년 42권 10호 p.702 ~ 710
 ( Lee Ji-Ae ) - University of Ulsan College of Medicine Department of Biochemistry and Molecular Biology

 ( Kim Dong-Jin ) - Korea Institute of Science and Technology Brain Science Institute Center for Neuro-Medicine
 ( Hwang On-You ) - University of Ulsan College of Medicine Department of Biochemistry and Molecular Biology


Neuroinflammation is an important contributor to the pathogenesis of neurodegenerative disorders including Parkinson’s disease (PD). We previously reported that our novel synthetic compound KMS99220 has a good pharmacokinetic profile, enters the brain, exerts neuroprotective effect, and inhibits NFκB activation. To further assess the utility of KMS99220 as a potential therapeutic agent for PD, we tested whether KMS99220 exerts an anti-inflammatory effect in vivo and examined the molecular mechanism mediating this phenomenon. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, oral administration of KMS99220 attenuated microglial activation and decreased the levels of inducible nitric oxide synthase and interleukin 1 beta (IL-1b) in the nigrostriatal system. In lipopolysaccharide (LPS)-challenged BV-2 microglial cells, KMS99220 suppressed the production and expression of IL-1b. In the activated microglia, KMS99220 reduced the phosphorylation of IκB kinase, c-Jun N-terminal kinase, and p38 MAP kinase; this effect was mediated by heme oxygenase-1 (HO-1), as both gene silencing and pharmacological inhibition of HO-1 abolished the effect of KMS99220. KMS99220 induced nuclear translocation of the transcription factor Nrf2 and expression of the Nrf2 target genes including HO-1. Together with our earlier findings, our current results show that KMS99220 may be a potential therapeutic agent for neuroinflammation-related neurodegenerative diseases such as PD.


heme oxygenase-1; IκB kinase; mitogen-activated protein kinases; neuroinflammation; Nrf2
원문 및 링크아웃 정보
등재저널 정보