잠시만 기다려 주세요. 로딩중입니다.

중환자실 섬망 환자와 비섬망 환자 구분에 기여하는 임상 지표에 관한 연구

A Study on Clinical Variables Contributing to Differentiation of Delirium and Non-Delirium Patients in the ICU

정신신체의학 2019년 27권 2호 p.101 ~ 110
고찬영 ( Ko Chan-Young ) - 연세대학교 의과대학 정신과학교실

김재진 ( Kim Jae-Jin ) - 연세대학교 의과대학 정신과학교실
조동래 ( Cho Dong-Rae ) - 딥메디 기업부설 연구소
오주영 ( Oh Joo-Young ) - 연세대학교 의과대학 정신과학교실
박진영 ( Park Jin-Young ) - 연세대학교 의과대학 정신과학교실

Abstract

연구목적: 중환자실 환자들의 섬망 발생 유무와 관련이 되어 있는 것으로 알려진 많은 임상 지표들이 있지만, 이 중 실제 섬망군과 비섬망군을 분류하는 데 있어서 어떠한 지표가 보다 중요한 역할을 하는지에 대한 연구는 충분히이루어지지 않았다. 본 연구는 중환자실 내에서 섬망이 발생한 군과 발생하지 않은 군 사이의 재실 기간 내 특징을 비교하고, 두 군을 효과적으로 구분할 수 있는 임상 지표들을 확인하고자 하였다.

방 법: 2013년 3월 1일부터 2017년 5월 31일까지 강남세브란스병원 중환자실에 있던 6386명의 환자들 중, 섬망과연관성을 보일 것으로 예상되는 40개의 임상 지표에 대한 데이터가 재실 기간 중 적어도 한 번 이상 측정되거나, 확인이 가능한 환자 1559명을 대상으로 하였다. 무작위 부분집합 특징 선택 방법 및 주성분분석을 사용하여 섬망과 비섬망을 구분하는 데에 기여도가 높은 특징들의 순위를 구하고, 몇 개의 상위 지표가 동시에 사용되었을 때에 섬망과 비섬망을 가장 효율적으로 판별할 수 있는지를 확인하였다. 확인된 상위 지표만을 이용한것과 전체 임상 지표를 모두 사용하였을 때의 섬망과 비섬망을 구분할 수 있는 정확도에 대해서 비교 분석하였다.

결 과: 총 40개 변수 중 32개의 변수에서 섬망과 비섬망군 간 유의미한 차이를 보였다. 주성분 분석(Principal Component Analysis, PCA)상, 상위 6개 변수인 리치몬드 흥분 진정 척도(Richmond Agitation Sedation Scale, RASS), 도뇨관 사용 유무, 혈관 카테터 사용 유무, 해밀턴 불안 척도(Hamilton Anxiety Rating Scale, HAM-A), 혈액 요소 질소(Blood Urea Nitrogen, BUN), 급성 생리학 및 만성 건강 평가-II (Acute Physiology and Chronic Health Examination II, APACHE II)를 사용했을 때에 섬망과 비섬망군이 가장 잘 구분되었다. 이들 상위 6개 변수에 대해 단일 변수 로지스틱 회귀분석 시행 시 모두 섬망 여부 결정에 대한 유의성을 보였다. 다중 변수 회귀분석 시행 시, 혈관 카테터 사용 유무 를 제외하고 나머지 5개 변수에서 모두 섬망 여부결정에 대한 유의성을 보였다. 수신자판단특성곡선 분석 결과 신뢰구간 95%에서 곡선하면적 0.818로 높은 판별력을 보였다. 전체 임상 변수를 모두 사용한 수신자판단특성곡선 분석 결과에서는 곡선하면적 0.881로 매우높은 판별력을 보였다.

결 론: 본 연구 결과, 리치몬드 흥분 진정 척도, 도뇨관 사용 유무, 혈관 카테터 사용 유무, 해밀턴 불안 척도, 혈액요소 질소, 급성 생리학 및 만성 건강 평가-II가 섬망이 발생한 군과 섬망이 발생하지 않은 군을 구분하는데가장 유용하였다. 중환자실 환자 중 리치몬드 흥분 진정 척도 및 해밀턴 불안 척도 점수가 과도하게 낮거나, 도뇨관 및 혈관 카테터 등의 침습적인

Objectives:It is not clear which clinical variables are most closely associated with delirium in the Intensive Care Unit (ICU). By comparing clinical data of ICU delirium and non-delirium patients, we sought to identify variables that most effectively differentiate delirium from non-delirium.

Methods:Medical records of 6,386 ICU patients were reviewed. Random Subset Feature Selection and Principal Component Analysis were utilized to select a set of clinical variables with the highest discriminatory capacity. Statistical analyses were employed to determine the separation capacity of two models-one using just the selected few clinical variables and the other using all clinical variables associated with delirium.

Results:There was a significant difference between delirium and non-delirium individuals across 32 clinical variables. Richmond Agitation Sedation Scale (RASS), urinary catheterization, vascular catheterization, Hamilton Anxiety Rating Scale (HAM-A), Blood urea nitrogen, and Acute Physiology and Chronic Health Examination II most effectively differentiated delirium from non-delirium. Multivariable logistic regression analysis showed that, with the exception of vascular catheterization, these clinical variables were independent risk factors associated with delirium. Separation capacity of the logistic regression model using just 6 clinical variables was measured with Receiver Operating Characteristic curve, with Area Under the Curve (AUC) of 0.818. Same analyses were performed using all 32 clinical variables;the AUC was 0.881, denoting a very high separation capacity.

Conclusions:The six aforementioned variables most effectively separate delirium from non-delirium. This highlights the importance of close monitoring of patients who received invasive medical procedures and were rated with very low RASS and HAM-A scores.

키워드

섬망; 중환자실; 전자의무기록; 판별분석
Delirium; Intensive care unit; Electronic medical record; Discriminatory analysis
원문 및 링크아웃 정보
 
등재저널 정보