Abstract

Comparison of Upper Extremity Muscle Activity With Transverse Plane Angle Changes During Vertical Keyboard Typing

Kang-jin Lee, M.Sc., P.T.
Dept. of Physical Therapy, The Graduate School, Hanseo University
Jung-suk Roh, Ph.D., P.T.
Tack-hoon Kim, Ph.D., P.T.
Heon-seock Cynn, Ph.D., P.T.
Houng-sik Choi, Ph.D., P.T.
Dong-sik Oh, M.Sc., P.T.
Dept. of Physical Therapy, Hanseo University

In order to prevent upper extremity musculoskeletal disorders, effective keyboard selection is an important consideration. The aim of this study was to compare upper extremity muscle activity according to transverse plane angle changes during vertical keyboard typing. Sixteen healthy men were recruited. All subjects had a similar typing ability (rate of more than 300 keystrokes per minute) and biacromion and forearm fingertip lengths. Four different types of keyboard (vertical keyboard with a transverse plane angle of 60°, 90°, or 120°, and a standard keyboard) were used with a wrist support. The test order was selected randomly for each subject. Surface electromyography (EMG) was used to measure upper extremity muscle activity during a keyboard typing task. The collected EMG data were normalized using the reference contraction and expressed as a percentage of the reference voluntary contraction (%RVC). In order to analyze the differences in EMG data, a repeated one-way analysis of variance, with a significance level of .05, was used. Bonferroni correction was used for multiple comparisons. There were significant differences in the EMG amplitude of all seven muscles (upper trapezius, middle deltoid, anterior deltoid, extensor carpi radialis, extensor carpi ulnaris, flexor carpi radialis, and flexor carpi ulnaris) assessed during the keyboard typing task. The mean activity of each muscle had a tendency to increase as the transverse plane angle increased. The mean activity recorded during all vertical keyboard typing was lower than that recorded during standard keyboard typing. There was no significant difference in accuracy and error scores; however, there was a significant difference between transverse plane angles of 60° and 120° with regard to comfort. In conclusion, a vertical keyboard with a transverse plane angle of 60° would be effective in reducing muscle activity compared with vertical keyboards with other transverse plane angles.

Key Words: Keyboard typing; Muscle activity; Transverse plane angle; Vertical keyboard.
I. 서론

컴퓨터 용 키보드는 평평형 (flat type), 텐트형 (tented type), 좌우 분리형 (split/angled type), 수직형 (vertical type) 등이 있으며, 컴퓨터가 사용된 이래로 여러 연구자에 의해 다양한 형태의 키보드가 개발되었다. 여전히 상치와 여게에 보다 감소된 근활성도를 추구하는 키보드 개선이 필요하다 (김민욱, 2000; Simonneau 등, 2003; van Galen 등, 2007).

타이핑작업 관련 근골격계 근활성도를 위한 실험 연구들을 살펴보면, 표준형 키보드에서 직렬화한 자세에 관한 연구 (Duncan과 Ferguson, 1974), 책상에서 대한 키보드의 상대적 위치에 따른 연구 (김민웅, 2000), 표준형 키보드의 시각 변화 각도 (7.5°, 0°, -7.5°, -15°) 및 수평각 각도 (25°) 변화를 적용한 연구 (권현철 등, 2004; 정병권, 2004; Hedge과 Powers, 1995; Marklin과 Simonneau, 2001; Simonneau 등, 2003), 텐트형 및 수직형 대체 키보드의 개발 (Marklin 등, 1999), 타이핑작업 시 손목 및 전완의 자세에 관한 연구 (Cook 등, 2004), 손목의 위치시각, 수직형 대체 키보드 (수평고, 관절각 각 90°), 전완자세와 사용을 경험한 연구들이 있었다 (van Galen 등, 2007).

van Galen 등 (2007)의 수평고 관절각 각 90°, 수직형 키보드와 표준형 키보드의 비교연구에서 수평고 관절각 각 90°, 수직형 키보드를 사용한 타이핑작업 동안 상치의 근력 변화가 유의한 차이로 감소되고 편리도, 오타수, 정확도는 유의한 차이가 많다고 하였고 수평고 관절각의 다양한 변화에 따른 근활성도 차이의 제시하지 못하였다. 양아래쪽패와 팔꿈치의 팔꿈치관절과 관절과 움직임적인 요인들은 수직형 키보드 사용 시 키보드의 수평고 관절각을 결정하는데 중요한 영향요인임이 된다 (Won 등, 2009). 특히, 동양인과 서양인은 척환의 차이가 있으므로, 움직임적인 요인들을 고려하여 동양인에게 좀 더 적합하도록 관절각을 조정하여 근활성도가 감소되는 대체키보드의 수직형 키보드와 수평고 관절각을 조정하는 것이 필요하다. 그러므로 연구의 목적은 수직형 키보드를 사용한 타이핑작업 동안, 상치의 근활성도 변화에 기여하도록 수평고 키보드의 수평고 관절각 변화를 가하여 편리성 및 정확도는 높고, 오타수 및 근활성도는 낮은 수평고 관절각을 알아보고자 한다.

본 연구의 가설은 다음과 같다. 첫째, 타이핑작업 시 수직형 키보드와 표준형 키보드 사용에 따라 상치의 근활성도는 차이가 있다. 둘째, 타이핑작업 시 수직형 키보드의 수평고 관절각 (60°, 90°, 120°)에 따라 상치의 근활성도는 차이가 있다. 셋째, 타이핑작업 시 수직형 키보드와 표준형 키보드 사용에 따라 정확도, 오타수, 편리도는 차이가 있다. 넷째, 타이핑작업 시 수직형 키보드의 수평고 관절각 (60°, 90°, 120°)에 따라 정확도, 오타수, 편리도는 차이가 있다.

II. 연구방법

1. 연구대상자

본 연구는 건강한 성인 남자 16명을 대상으로 실시하였다. 연구대상자들은 지난 6개월 동안 머리, 목, 등, 팔의 손상이나 타이핑작업의 어려움이 없는 자로서 다음과 같은 조건에 부합하는 연구대상자를 선정하여 연구대상자에 대한 동의서를 작성하고자 하였다.

첫째, 체질량지수 (body mass index: BMI)가 정상 권한 20 ≤ BMI ≤ 25의 범위에 속하는 자

둘째, 키보드를 보지 않고 300타 이상을 칠 수 있으며, 수행 정도 (performance)나 오차수 (error score)가 비슷한 자

셋째, 양아래쪽패와 팔꿈치관절 및 관절과 움직임적인 요인들이 수직형 키보드 사용 시 키보드의 수평고 관절각을 결정하는데 중요한 영향요인이 되는 (Won 등, 2009).

2. 실험조건

가. 키보드

실험을 위해 4 종류의 키보드 (표준형 키보드 1개, 수직형 키보드 3개)를 사용하였다. 표준형 키보드는 자판 배열이 좌측에서 우측으로 QWERTY인 전통적인 표준형 키보드 (1)를 사용하였고, 수직형 키보드는 수평고 각 60° (14 cm × 14 cm × 15 cm), 90° (14 cm × 18 cm × 15 cm), 120° (14 cm × 20 cm × 15 cm)의 3 종류의 키보드로 표준형 키보드를 변형시켜 각각 제작하였다 (그림 1). 모두 고정된 폴리에틸렌 재질의 손목 지지대 (wrist support)를 사용하였다. 김민욱 (2000; Cook 등, 2004), 전완자세대 (forearm support)의 근활성


나. 근전도 기기

타이핑작업 동안의 상치의 7개 근육의 근활성도를 측정하기 위해 근전도 기기2를 사용하였다. 전극은 직
름이 1 cm, 전극간 간격이 2 cm인 이극표면전극3(bipolar surface electrode)을 사용하였다. 표본수집을
은 1024 Hz 로 하였다. 저대역 통과 필터(low-pass filter)는 500 Hz를 사용하였고, 고대역 통과 필터
(high-pass filter)는 20 Hz를 심리학 신호나 움직임 관
련 잡음(movement artifact)의 영향을 최소화하기 위해
사용하였다(Saeto 등, 2005; van Galen 등, 2007). 국내
교류 전기제품의 60 Hz 사용 및 실험실의 환경에 기인
하여 대역 절지 필터(band stop filter)는 60, 120, 180
Hz를 사용하였다. 근전도 신호는 제곱평균제곱근(root
mean square; RMS)값을 5분 간 측정한 후 가운데 3분
동안의 평균값을 사용하였다.

3. 실험방법

가. 측정 방법 및 자세

4종류의 키보드의 적용순서는 순서효과를 최소화하
기 위해 세바퀴기를 이용하여 결정하였다(Simoneau 등,
2003). 연구대상자의 측정 자세는 좌우의 골반과 differs
에 등을 때며, 엉덩관절 굽힘 90°, 양 손을 모으는 어
깨관절 모음 및 안쪽둘리(수직형 키보드), 팔꿈관절 굽
힘 90°, 손목 중립, 무릎관절 90°, 발목관절 90°를 유지
하였다. 특히, 팔꿈관절 90° 및 어깨관절 모음 시 책갈
상 높이 및 키보드 위치를 조절하여 연구대상자마다
동일한 자세를 유지하도록 하였다.

모니터는 눈으로부터 하방 15° 및 거리는 60 cm를 유지하였으며(Glad와 Hard, 2000), 키보드와 모니터 간 거
리는 40 cm를 유지하였고(노동부, 2004). 수직형 키보드는
무릎 위의 키보드 전용 받침대를 설치하여 위치 안정성
을 도모한 상태에서 타이핑작업을 실시하였으며, 폭 25
cm인 밸크로를 사용하여 미끄럼 방지하였다(그림 2).

\[ \text{그림 1. 키보드 종류 가 표준형, 나 깁인각 60°, 다 깁인각 96°, 라 깁인각 120°.} \]

\[ \text{그림 2. 타이핑작업 자세.} \]

---

2) MP100A-CE, BIOPAC System Inc., CA, U.S.A.
3) TSD 150B, BIOPAC System Inc., CA, U.S.A.
나. 근전도 전극의 설치
파부저항 등 최소화하기 위하여 민도기로 펠을 제거하였으며, 사포로 각질을 제거하고, 알코올로 아두일을 제거하였으며, 전극의 전기 전도성을 향상시키기 위하여 전극 표면에 젤을 도포하였다. 일반적으로 컴퓨터 태이핑작업 시 많이 사용되고 알려져 있는 위동세모근, 앞앞뼈보근, 노총손목부근을 포함한, 유속 당시 7개 근육에 음극을(Ag–AgCl 이극표면전극) 부착하였으며(Szeto 등, 2005; van Galen 등, 2007; Won 등, 2009), 전지전극(ground electrode)은 C7 가시돌기에 부착하였다(표 1).

다. 자료 수집
4가지 총류 키보드를 부착하여 사용하였으며 태이핑작업을 실시하는 동안 자전의 근활성도를 측정하였다. 태이핑작업을 위하여 한글과컴퓨터 태이핑프로그램을 사용하였으며, 태이핑작업 중 사용빈도에 있어 개인차가 큰 delete키와 spacebar키는 사용을 제한하였고, 오타를 수정하지 않도록 하였다(최승호 등, 1999). 수직형 키보드에 대한 작용을 위해 실험전 1주일 동안, 주 3회 30분 동안 적응시간을 부여하였다. 실험시에는 측정전에 5분간 추가 적응시간을 부여하였다. 4종류의 키보드를 이용한 태이핑작업은 각각 5분간 실시하였으며, 작업간 휴식시간은 10분으로 하였다. 5분 동안 작업의 측정값 중 가운데 3분 동안의 측정값을 자료로 수집하였다.

측정된 자료는 정규화(normalization)를 위하여 자발적기준수축백분율(% reference voluntary contraction; %RVC)을 계산하여 사용하였다(장도기, 2006; 김효준, 2006; Cook 등, 2004; Hansson 등, 2000). %RVC의 계산을 위해 각 근육의 자발적기준수축값은 다음과 같이 측정하였다. 각 실험자 별로 위동세모근 및 중간아깨소토근의 경우 1 kg 이하의 수축 상태를 들고 아깨관절 별랑하고 팔굽관절이 고관절하방으로 한 후, 손등이 위로 향하게 하였고, 앞앞뼈보근의 측정은 유속 상자에 이르게 관절 90° 급합하고 팔꿈관절은 완전히 펼치도록 하였고 전완은 반열침(semipronation)으로 하였다. 손목 췌근 및 급립근의 측정은 팔꿈관절 90° 급합에서 어깨를 들지 않고 대신으로 완전 펼 및 급립 자세를 취하였다. 각각의 측정시작에서 10초 유지하는 동안 근전도 신호를 각각 3회 반복측정한 후, 각각 중간 5초 동안의 평균으로 자발적 기준의 수축 값을 구하였으며, 상기 모든 자세는 없는 자세에서 실시하였다(장도기, 2005; Cook 등, 2004; Hansson 등, 2000).

실험 전 실험동의서를 작성하도록 하였고, 인체치수를 측정하여 세질인류학적 차이가 극단값을 가지는 연구대 상자는 실험에서 제외하였다. 태이핑작업 중료 후 키보드 종류마다 편리도 값의 객관성을 증진시키기 위해 '전히 편리하지 않는'의 1점에서 '더 이상 못 하고야'의 7점으로 등급을 표기하는 질문지를 작성하였으며, 정확도와 터타수의 자료 수집은 한글과컴퓨터 태이핑 프로그램 Version 2.0.2.1을 사용하여 구하였다.

4. 분석 방법
자료의 통계 처리는 상용 통계 프로그램인 윈도용 SPSS version 12.0을 사용하였다. 키보드의 종류에 따른 7개 근육의 근활성도와 정확도, 터타수, 편리도를 비교하기 위하여 반복측정된 자료를 위한 일요인 분산분석(one-way ANOVA with repeated measures)을 실시하였고, 사후검정방법으로 Bonferroni 수정(Bonferroni’s correction)에 의한 검점을 실시하였다. 통계학적 유의성을 검정하기 위해서 유의수준 α는 .05로 하였다.

표 1. 상지 근육의 근전도 전극 부착위치

<table>
<thead>
<tr>
<th>근육</th>
<th>전극 부착위치</th>
</tr>
</thead>
<tbody>
<tr>
<td>위동세모근</td>
<td>어깨봉우리와 7번 가시돌기의 연장선 위 중앙점</td>
</tr>
<tr>
<td>중간아깨소토근</td>
<td>어깨봉우리와 어깨세모근 결합 중앙점</td>
</tr>
<tr>
<td>앞앞뼈보근</td>
<td>어깨봉우리와 어깨세모근 결합 중앙에서 약 2/3지점</td>
</tr>
<tr>
<td>노총손목부근</td>
<td>자작손목부근</td>
</tr>
<tr>
<td>자작손목부근</td>
<td>엉은 자세로 팔굽관절 90°에서 열림 및 놓임 시</td>
</tr>
<tr>
<td>노총손목근</td>
<td>요축 근육 및 정의 최대 근육수축이 충족된 근육에 부착</td>
</tr>
<tr>
<td>자작손목근</td>
<td></td>
</tr>
</tbody>
</table>
과

1. 연구대상자의 일반적 특성

연구대상자는 남자 16명의 평균 나이는 22.6세, 평균 신장은 173.1 cm, 평균 체중은 69.5 kg이었으며, 체질량 지수가 21.7로 정상 집단에 속하였고, 평균 양아께아이 길이는 43.6 cm, 평균 팔꿈치손끝길이는 45.8 cm이었으며, 평균 터치속도는 362.5타/분이었다(표 2).

2. 키보드의 종류에 따른 근활성도 비교

수직형 키보드의 수평면 기인각에 따른 근활성도는 7개 근육 모두에서 유의한 차이가 있었으며, 근육 별로 수직형 키보드 수평면 기인각이 60°, 기인각 96°, 기인 각 120°, 표준형 키보드의 순서로 평균값이 증가하는 추세였으며, 중간어깨저리근과 자목손목금침근의 경우 기인각 120°의 수직형 키보드와 표준형 키보드 보다 평균값이 높았다(표 3). 다중비교 중 수평면 기인각 60°인 수직형 키보드와 나머지 3가지 키보드를 비교하였을 때, 수평면 기인각 96°에서 120°로, 120°에서 표준형 키보드로 근활성도가 증가하는 경향을 보였으나 농축손목금침근에서는 수평면 기인각이 120°인 수직형 키보드만 유의한 차이가 있었다(표 4).

3. 키보드 종류에 따른 정확도, 오타수, 편리도 비교

정확도와 오타수는 키보드 종류에 따라 유의한 차이가 없었으며, 편리도는 유의한 차이가 있었다. 다중비교 시 수평면 기인각 60°와 120°인 수직형 키보드에서 유의한 차이가 있었다(표 5).

IV. 고찰

본 연구는 수직형 키보드를 사용한 타이핑 작업 동안, 특히 한국인의 상지 근골격계 질환 예방에 기여하도록 수직형 키보드의 수평면 기인각 변화를 가하여 전력성 및 정확도는 높이고, 오타수 및 근활성도는 낮추는 경유타용 대체키보드인 수직형 키보드의 수평면 기인각을 조사하기 위해 실시한 연구이다.

수직형 키보드의 수평면 기인각 선정 이유는 van Galen 등(2007)의 연구에서 기인각 96°만이 상지의 근 활성도가 감소함을 보고하였으나, 본 연구의 예비실험에서 기인각 60°에서 근활성도가 감소하였고, 연구대상자의 표본 구조에 따른 차이를 고려하여 기인각 120°를 추 가하였으며, 선정 이유를 자세히 언급하면 아래와 같다.


表 2. 연구대상자의 일반적 특성

<table>
<thead>
<tr>
<th></th>
<th>평균±표준편차</th>
</tr>
</thead>
<tbody>
<tr>
<td>나이(세)</td>
<td>22.6±2.3</td>
</tr>
<tr>
<td>신장(cm)</td>
<td>173.1±5.9</td>
</tr>
<tr>
<td>체중(kg)</td>
<td>69.5±9.0</td>
</tr>
<tr>
<td>체질량지수(kg/m²)</td>
<td>21.7±1.8</td>
</tr>
<tr>
<td>양아께아이길이(cm)</td>
<td>43.6±2.7</td>
</tr>
<tr>
<td>팔꿈치손끝길이(cm)</td>
<td>45.8±2.0</td>
</tr>
<tr>
<td>터치속도(타/분)</td>
<td>362.5±87.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>기인각 60°</th>
<th>기인각 96°</th>
<th>기인각 120°</th>
<th>표준형</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT*</td>
<td>11.92±4.76*</td>
<td>16.76±7.97</td>
<td>18.87±10.06</td>
</tr>
<tr>
<td>MD*</td>
<td>4.01±1.96</td>
<td>4.25±1.98</td>
<td>4.84±1.92</td>
</tr>
<tr>
<td>AD*</td>
<td>4.36±1.27</td>
<td>7.49±1.44</td>
<td>10.49±2.29</td>
</tr>
<tr>
<td>ECR*</td>
<td>13.75±5.47</td>
<td>14.02±3.95</td>
<td>20.60±12.03</td>
</tr>
<tr>
<td>ECU*</td>
<td>12.24±4.65</td>
<td>13.66±6.05</td>
<td>15.87±5.44</td>
</tr>
<tr>
<td>FCR*</td>
<td>46.47±21.56</td>
<td>49.21±26.9</td>
<td>52.86±25.7</td>
</tr>
<tr>
<td>FCU*</td>
<td>40.92±29.03</td>
<td>49.58±36.81</td>
<td>51.34±36.51</td>
</tr>
</tbody>
</table>

*평균±표준편차.
표 4. 키보드 종류에 따른 근활성도 다중비교

<table>
<thead>
<tr>
<th></th>
<th>UT (%)</th>
<th>MD (%)</th>
<th>AD (%)</th>
<th>ECR (%)</th>
<th>ECU (%)</th>
<th>FCR (%)</th>
<th>FCU (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60°~90°</td>
<td>0.01</td>
<td>0.14</td>
<td>0.00</td>
<td>1.00</td>
<td>0.02</td>
<td>1.00</td>
<td>0.02</td>
</tr>
<tr>
<td>60°~120°</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>60°~표준형</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.08</td>
</tr>
<tr>
<td>90°~120°</td>
<td>1.00</td>
<td>0.07</td>
<td>0.00</td>
<td>0.13</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>90°~표준형</td>
<td>0.03</td>
<td>0.73</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.23</td>
<td>1.00</td>
</tr>
<tr>
<td>120°~표준형</td>
<td>0.40</td>
<td>0.40</td>
<td>0.01</td>
<td>1.00</td>
<td>0.00</td>
<td>0.74</td>
<td>1.00</td>
</tr>
</tbody>
</table>

* p 값


표 5. 키보드 종류에 따른 정확도, 오타수, 편리도 비교

<table>
<thead>
<tr>
<th></th>
<th>개인각 60°</th>
<th>개인각 90°</th>
<th>개인각 120°</th>
<th>표준형</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>정확도(%)</td>
<td>91.01±3.61</td>
<td>92.01±5.92</td>
<td>90.01±4.83</td>
<td>95.52±2.73</td>
<td>0.06</td>
</tr>
<tr>
<td>오타수(개)</td>
<td>10.12±4.51</td>
<td>9.12±7.03</td>
<td>11.52±5.61</td>
<td>7.30±3.12</td>
<td>0.05</td>
</tr>
<tr>
<td>편리도(점)</td>
<td>2.80±1.92</td>
<td>3.20±1.53</td>
<td>3.42±1.21</td>
<td>2.81±1.92</td>
<td>0.04</td>
</tr>
</tbody>
</table>

*평균± 표준편차.

것에 근거하여, 양각사각각이란 한 변과 최우측 꼭짓점과 각을 등어두는 정각각형, 등거가 차이가 나면 예측이나 근활성화량을 이루고 되므로 수직형 키보드의 수평면 개인각을 60° 
\[ \leq \text{개인각} \leq 90° \] 또는 개인각 > 90°로 예측할 수 있었다. 특히, van Galen 등(2007)은 표준형 키보드와 비교 시, 수평면 개인각 90° 수직형 키보드가 상지의 근활성도 감소에 적합하는 연구 보고를 결론으로 끝냈다. 평 기본각이 비슷함에 비하여 상지의 감소가 한국인에 불과한 길길이 있는 상지의 개인각이 더 커지거나 줄어들면서 수평형 키보드의 개인각이 90° 전후로 형성될 것이다. 본 연구의 예시실습 결과에서 연구대상자의 양각 사각각이란 미국인 통계자료와 비슷하였고, 평균보다 상대적으로 높았다. 그러나 수직형 키보드의 수평면 개인각이 결정적 역할을 제공하게 되는 근활성화 등거가 오히려 길어졌기 때문에, 수평면 개인각이 90°보다 작은 60°를 예상하였다. 또한, 연구대상자의 체형이나 표본 규모 차이를 고려하여 개인각 설정을 60°, 90°, 120°로 하였다. 수직형 키보드 수평면 개인각이 0°와 30°인 경우는 예시 성과에서 연구 목표에 부합하지 않는 수치 등의 증가로 인하여 독립 변수의 수준에서 제외하였다(최해선 등, 2006; van Galen 등, 2007; Won 등, 2009).

이론적으로, 수직형 키보드의 수평면 개인각 60° 선정은 역상각각을 이용하여 구체적으로 계산할 수 있었다. \[ y = \sin(x) \] 라는 삼각함수로서는, \( x(\text{degree}) \) 값에 따라 \( y(\text{radian}) \) 값을 구하지만, 이 함수의 역삼각함수인 \( \arcsin(y) = x \) 를 이용하여, 양각사각각이란 48.6 cm를 빠르게 하고 양각 간격 등의 값이 48.8 cm를 빠르게 하므로 이등변삼각형의 개인각 29°를 기울 수 있었다. 즉, \( \arcsin(21.8/45.8)=x \)에서, 29°가 57.2°였으며, 측형에 따른 실험 집단을 고려하여 수직형 키보드의 수평면 개인각은 60°로 선정하였다(송영무 등, 1996).

van Galen 등(2007)은 %MVC는 전통적으로 많이 사용되는 방법이지만, 값이 너무 작게 나오기 때문에 5% 실험 시 최대 수축량(maximum experimental contraction: MEC)을 정규화로 사용하였고, 본 연구에서는 키보드 작업 시 체질량지수의 차이의 최소화에도 불구하고 연구대상 자 간 근육 차이 등을 감소시키기 위하여 %MVC나 %MEC보다 자발적 근육 수축이 좀 더 타당하다고 판단되어, 근간노 증폭균과 근간의 정규화를 위해 자 발적기준수축의 백분율(%MVC)을 사용하였다(장도기, 2002; 김효준, 2006; Cook 등, 2004; van Galen 등, 2007).


본 연구 결과에서 수평면 기각각이 60% 수직형 키보드가 다른 3가지 키보드(수평면 기각각이 90°와 120°인 수직형 키보드, 표준형 키보드)에 비하여 상자의 근활성도가 유의한 차이로 감소하였고, (노조손목관절의 설정)한 원인은 손목 및 전완의 중립영상과 더불어 전완관 기전 축선, 근 간 관절 균형 등으로 설명될 수 있다. 상술한 바에 따르면, 수평면 기각각이 60% 수직형 키보드는 손목, 팔뼈 추출 위, 어깨관절 볼림 등이 악화되는 손목 및 어깨 중립영상 근부가 감소하였을 것이다. 또한 수평면 기각각이 60% 수직형 키보드를 사용할 경우, 표준형 키보드의 사용하는 경우보다 손과 어깨의 증상 영향이 상대적으로 감소하게 되었다. 또한, 손의 전완골 기전 구성 요소인 근간 연결구조가 상대적으로 향상되었으며, 근관 근양 근육의 근력도가 감소하였을 것이다. 또한, 손의 전완골 기전 구성 요소인 근간 연결구조가 상대적으로 향상되었으며, 근관 근양 근육의 근력도가 감소하였을 것이다.

표준형 키보드의 사용하는 경우보다 손과 어깨의 증상 영향이 상대적으로 감소하게 되었다. 또한, 손의 전완골 기전 구성 요소인 근간 연결구조가 상대적으로 향상되었으며, 근관 근양 근육의 근력도가 감소하였을 것이다. 또한, 손의 전완골 기전 구성 요소인 근간 연결구조가 상대적으로 향상되었으며, 근관 근양 근육의 근력도가 감소하였을 것이다. 또한, 손의 전완골 기전 구성 요소인 근간 연결구조가 상대적으로 향상되었으며, 근관 근양 근육의 근력도가 감소하였을 것이다.
가 없는 경우에, 상지의 작업관련성 근골격계 질환 감소 및 예방을 위하여 수평면 개인의 60°의 수직형 키보드가 적합하다.

인용문헌

강도기, 키보드 타이핑 작업 시 광독 저지방법에 따른 근 활성도 비교, 연세대학교 대학원, 심사학회논문, 2006.  
김민옥, 키보드 높이와 디자인에 따른 상지의 자세 변화와 손목근 건장성에 관한 연구, 서울대학교 대학원, 심사학회논문, 2000.  
김효준, 근골격계질환 예방을 위한 마우스 작업의 손목저지대 개선, 한국과학기술원, 심사학회논문, 2006.  
노동부, 영상표시단말기 (VDT) 취급근로자 작업관리지침. 2004;2-11.  
승영무, 박형빈, 정권수 등, 미적분학, 경문사, 1996;133-138.  
정병권, 컴퓨터 키보드의 정사도가 정신적 및 신경적 쌍부사와 단무지외근간의 건강도에 미치는 영향, 영남대학교 대학원, 심사학회논문, 2004.  
최혜선, 이경화, 강우선, 한국과 미국 성인의 3차원 인체저수 비교, 한국의학회지. 2007;31(6):982-991.  

Szeto GY, Straker LM, O'Sullivan PB. EMG median


 논문 접 수 일 2008년 11월 20일
 논문 제 제 송 인 일 2009년 4월 28일