잠시만 기다려 주세요. 로딩중입니다.

A semi-automatic cell type annotation method for single-cell RNA sequencing dataset

Genomics & Informatics 2020년 18권 3호 p.26 ~ 26
김완, 윤성민, 김상수,
소속 상세정보
김완 ( Kim Wan ) - Soongsil University Department of Bioinformatics and Life Science
윤성민 ( Yoon Sung-Min ) - Soongsil University Department of Bioinformatics and Life Science
김상수 ( Kim Sang-Soo ) - Soongsil University Department of Bioinformatics and Life Science

Abstract


Single-cell RNA sequencing (scRNA-seq) has been widely applied to provide insights into the cell-by-cell expression difference in a given bulk sample. Accordingly, numerous analysis methods have been developed. As it involves simultaneous analyses of many cell and genes, efficiency of the methods is crucial. The conventional cell type annotation method is laborious and subjective. Here we propose a semi-automatic method that calculates a normalized score for each cell type based on user-supplied cell type-specific marker gene list. The method was applied to a publicly available scRNA-seq data of mouse cardiac non-myocyte cell pool. Annotating the 35 t-stochastic neighbor embedding clusters into 12 cell types was straightforward, and its accuracy was evaluated by constructing co-expression network for each cell type. Gene Ontology analysis was congruent with the annotated cell type and the corollary regulatory network analysis showed upstream transcription factors that have well supported literature evidences. The source code is available as an R script upon request.

키워드

cell type annotation; co-expression network; regulatory network; single-cell RNA sequencing; transcription factor

원문 및 링크아웃 정보

등재저널 정보