Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

´ë¼öÁ¤±ÔÁý´Ü¿¡¼­ Á¤»ó¹üÀ§¸¦ Á¤ÇÏ´Â ÇÑ °£ÆíÇÑ ¹æ¹ý A Simple Method for Determining Normal Range in a Lognormal Population

ºÎ»êÀÇ´ëÀâÁö 1977³â 17±Ç 2È£ p.37 ~ 42
Á¤Ã¢¼ö,
¼Ò¼Ó »ó¼¼Á¤º¸
Á¤Ã¢¼ö (  ) 
ºÎ»ê´ëÇб³ Àǰú´ëÇÐ º´¸®Çб³½Ç

Abstract

ÀúÀÚ´Â À§¿¡¼­ ´ë¼öÁ¤±ÔÁý´Ü¿¡ À־ »ê¼úÆò±Õ°ú Ç¥ÁØÆíÂ÷¸¸ ¾Ë¸é, ÀÌ ³í¹®ÀÇ ºÎÇ¥¸¦ ÀÌ¿ëÇÏ¿© À̰ÍÀÌ Çã¿ëÇÏ´Â ¹üÀ§³»¿¡¼­ Á¤»ó¹üÀ§¸¦ ½±°Ô Á¤ÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» ±â¼úÇÏ¿´´Ù. ÀÌ ¹æ¹ýÀº ´ë¼ö¿¬»êÀ» ÇÊ¿ä·Î ÇÏÁö´Â ¾Æ´ÏÇÑ´Ù.
In this paper the author described a simple method for determining normal range in a lognormal population. This method consists in calculating the upper limit, UL(100(1-2a)¡Æ/,), and the lower limit, LL(100(1-2a)%), of the middle 100(1-2a)% normal range by means of the following formulas:
UL(100(l-2a)%)=m=+Uaa-z,
LL(100(l-2a)%)=m=+Laa-=,
where a is the size of abnormal area set up on each side, m= and a-, are the arithmetic mean and standard deviation of the distribution, respectively, and Ua and LQ are the coefficients of the upper and lower limits, respectively, the vaules of which are found in the table attached to this paper.
As the method does not require some knowlege of logarithmic operation, one can easily obtain by it the upper and lower limits in a lognormal population without using the cumbersome logarithmic computation as in the classical method.

Ű¿öµå

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

µîÀçÀú³Î Á¤º¸