Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

The Variational Method Applied to the Neutron Transport Equation

¿øÀÚ·ÂÇÐȸÁö 1971³â 3±Ç 4È£ p.203 ~ 208
±è»ó¿ø, Pac Pong-Youl,
¼Ò¼Ó »ó¼¼Á¤º¸
±è»ó¿ø ( Kim Sang-Won ) 
Seoul National University Department of Nuclear Engineering

 ( Pac Pong-Youl ) 
Seoul National University Department of Nuclear Engineering

Abstract

NoetherÀÇ ÀÌ·ÐÀ» 1Â÷¿øÀÇ Áß¼ºÀÚ ¼ö¼Û¹æÁ¤½Ä¿¡ Àû¿ëÇÏ¿´´Ù. 1Â÷¿øÀÇ Boltzmann ¹æÁ¤½ÄÀÇ FunctionalÀ» ºÒº¯ÄÉ ÇÏ´Â º¯È¯À» ±¸ÇßÀ¸¸ç À̰á°ú Áß¼ºÀÚ¼Ó°ú ±×ÀÇ Adjoint Áß¼ºÀÚ¼ÓÀÇ °öÀÌ º¸Á¸µÈ´Ù´Â ¹ýÄ¢À» À¯µµÇÏ¿´´Ù. ÀÌ º¸Á¸¹ýÄ¢À¸·ÎºÎÅÍ 1Â÷¿øÀÇ Boltzmann ¹æÁ¤½ÄÀÇ °¡´ÉÇÑ ÇØÀÇ ÇüŸ¦ ¾ò¾ú°í À̰ÍÀ» ÀÌ¹Ì ¾Ë·ÁÁø ÇØ¿Í ºñ±³ÇÏ¿´´Ù.
Noether¢¥s theorem is applied to the one dimensional neutron transport equation. It is obtained the transformatiion rendering the functional of the one dimensional Boltzmann equation invariant. It is derived the law conserving the product of the directional flux and its ad joint flux. The possible types of the solution of the Boltzmann equation are discussed. The results are compared with the well¡©known solution.

Ű¿öµå

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

µîÀçÀú³Î Á¤º¸