잠시만 기다려 주세요. 로딩중입니다.

Alcohol dehydrogenase 1 and NAD(H)-linked methylglyoxal oxidoreductase reciprocally regulate glutathione-dependent enzyme activities in Candida albicans

Journal of Microbiology 2021년 59권 1호 p.76 ~ 91
소속 상세정보

Abstract


Glutathione reductase (Glr1) activity controls cellular glutathione and reactive oxygen species (ROS). We previously demonstrated two predominant methylglyoxal scavengers-NAD(H)-linked methylglyoxal oxidoreductase (Mgd1) and alcohol dehydrogenase 1 (Adh1)-in glutathione-depleted γ-glutamyl cysteinyl synthetase-disrupted Candida albicans. However, experimental evidence for Candida pathophysiology lacking the enzyme activities of Mgd1 and Adh1 on glutathione-dependent redox regulation remains unclear. Herein, we have aimed to demonstrate that glutathione-dependent enzyme activities coupled with cellular ROS changes is regulated by methylglyoxal accumulation in Δmgd1/Δadh1 double disruptants. Δmgd1/Δadh1 showed severe growth defects and G1-phase cell cycle arrest. The observed complementary and reciprocal methylglyoxal-oxidizing and methylglyoxalreducing activities between Δmgd1 and Δadh1 were not always exhibited in Δmgd1/Δadh1. Although intracellular accumulation of methylglyoxal and pyruvate was shown in all disruptants, to a greater or lesser degree, methylglyoxal was particularly accumulated in the Δmgd1/Δadh1 double disruptant. While cellular ROS significantly increased in Δmgd1 and Δadh1 as compared to the wild-type, Δmgd1/Δadh1 underwent a decrease in ROS in contrast to Δadh1. Despite the experimental findings underlining the importance of the undergoing unbalanced redox state of Δmgd1/Δadh1, glutathione-independent antioxidative enzyme activities did not change during proliferation and filamentation. Contrary to the significantly lowered glutathione content and Glr1 enzyme activity, the activity staining-based glutathione peroxidase activities concomitantly increased in this mutant. Additionally, the enhanced GLR1 transcript supported our results in Δmgd1/Δadh1, indicating that deficiencies of both Adh1 and Mgd1 activities stimulate specific glutathione-dependent enzyme activities. This suggests that glutathione-dependent redox regulation is evidently linked to C. albicans pathogenicity under the control of methylglyoxal-scavenging activities.

키워드

alcohol dehydrogenase 1; Candida albicans; glutathione; hyphal growth; methylglyoxal; NAD(H)-linked methylglyoxal oxidoreductase

원문 및 링크아웃 정보

등재저널 정보